c++中如何判断一个数是否为水仙花数_c++三位数水仙花数代码

15次阅读

水仙花数是各位数字的n次方和等于自身的n位正整数。例如153是三位水仙花数,因1³+5³+3³=153;判断时需动态计算位数、逐位提取、手写整数幂函数防浮点误差,并注意整型溢出。

c++中如何判断一个数是否为水仙花数_c++三位数水仙花数代码

什么是水仙花数(Narcissistic number)?

水仙花数特指一个 n 位正整数,其各位数字的 n 次方之和恰好等于它本身。比如三位数中常见的 153:因为 1³ + 5³ + 3³ = 1 + 125 + 27 = 153,所以它是水仙花数。

注意:严格来说,“水仙花数”在中文语境里常被默认为三位数,但数学定义是泛指 n 位数的自幂数。c++ 判断时必须先确定位数,再逐位求幂累加,不能硬编码只算三次方。

判断任意正整数是否为水仙花数的通用函数

关键点在于:不能假设输入一定是三位数;要动态计算位数、提取每位数字、用 pow 或手动幂运算(注意 pow 返回 double,可能有精度问题)。

  • 循环to_string 获取位数 n
  • 用取模 % 10 和整除 / 10 提取每一位
  • 避免 pow(digit, n) —— 对大数或某些编译器(如 MSVC)可能导致浮点误差,建议手写整数幂函数
  • 注意 int 溢出风险:比如 9⁹ = 387,420,489,仍在 int 范围内;但 9¹⁰ 就超了,所以对超过 9 位的数,可提前返回 false 或改用 long long
bool isNarcissistic(int num) {     if (num <= 0) return false;     int temp = num;     int n = 0;     while (temp) { n++; temp /= 10; } // 计算位数      temp = num;     int sum = 0;     while (temp) {         int digit = temp % 10;         int power = 1;         for (int i = 0; i < n; ++i) power *= digit; // 手动计算 digit^n         sum += power;         temp /= 10;     }     return sum == num; }

输出所有三位数水仙花数的简洁代码

如果只要三位数(100–999),可直接固定 n = 3,省去位数统计开销,也更安全——因为三位数的立方最大为 9³ = 729,三个相加最多 3×729 = 2187,不会溢出 int

立即学习C++免费学习笔记(深入)”;

常见错误:用 pow(i/100, 3) + pow((i/10)%10, 3) + pow(i%10, 3) —— pow 的浮点结果转 int 可能因舍入误差错判(例如 pow(4,3) 理论是 64,但某些平台返回 63.999999)。

#include  using namespace std;  int main() {     cout << "三位水仙花数:";     for (int i = 100; i <= 999; ++i) {         int a = i / 100;         int b = (i / 10) % 10;         int c = i % 10;         int sum = a*a*a + b*b*b + c*c*c;         if (sum == i) cout << i << " ";     }     cout << endl;     return 0; }

容易被忽略的边界与性能细节

真正写健壮代码时,这几个点常被跳过:

  • 0 不是水仙花数(按定义要求“正整数”,且 0¹ = 0 会误判;但单独处理更清晰)
  • 一位数如 5:满足 5¹ = 5,数学上属于水仙花数,但多数题目隐含“多位数”,需看题意
  • std::to_string(x).Length() 简洁但有构造开销,对高频调用不友好
  • 预计算幂表(如 int cube[10] = {0,1,8,27,...})比每次循环乘更快,尤其对固定位数场景

如果你在写算法题或嵌入式环境,优先手算幂、避免 pow、显式处理 0 和负数——这些不是“小问题”,而是导致 WA 或运行时异常的根源。

text=ZqhQzanResources